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ABSTRACT. In this paper we obtain certain sufficient conditions for the uni-
valence of pluriharmonic mappings defined in the unit ball B™ of C™. The
results are generalizations of conditions of Chuaqui and Herndndez that relate
the univalence of planar harmonic mappings with linearly connected domains,
and show how such domains can play a role in questions regarding injectivity
in higher dimensions. In addition, we extend recent work of Herndndez and
Martin on a shear type construction for planar harmonic mappings, by adapt-
ing the concept of stable univalence to pluriharmonic mappings of the unit ball

B™ into C™.
1. INTRODUCTION
Let C™ denote the space of n complex variables z = (21, ...,2,) with the Eu-
clidean inner product (z,w) = 3°7_, z;w; and the Euclidean norm [|z|| = (z, 2)1/2,

The open ball {z € C" : ||z|| < r} is denoted by B! and the unit ball B} is denoted
by B™. In the case of one complex variable, B! is the usual unit disc U.

Let L(C™,C™) denote the space of linear operators from C” into C™ with the
standard operator norm. The space L(C™,C"™) is denoted by L(C™). Also, let I,, be
the identity in L(C™). If © is a domain in C", let H(2) be the set of holomorphic
mappings from Q into C*. If © is a domain in C™ which contains the origin and
f € H(Q), we say that f is normalized if f(0) = 0 and Df(0) = I,,. The family of
normalized biholomorphic mappings on B™ will be denoted by S(B™). In the case
n =1, S(B!) is denoted by S, which is the usual family of normalized univalent
functions on U. If f € H(B"™), we say that f is locally biholomorphic on B™ if
det Df(2) # 0, z € B", where Df(z) is the complex Jacobian matrix of f at z. Let
LS, be the set of normalized locally biholomorphic mappings on B™.

A complex-valued function f of class C2? on B" is said to be pluriharmonic if its
restriction to every complex line is harmonic, which is equivalent to the fact that
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Every pluriharmonic mapping f : B® — C™ can be written as f = h + g, where
g,h € H(B™), and this representation is unique if g(0) = 0.

If f=h+7:B" — C" is a pluriharmonic mapping such that h is locally biholo-
morphic on B”, we denote by J the real Jacobian of f and w¢(z) = Dg(z)[Dh(z)]~*
for z € B™. Then

_ Dh(z) Dg(2) n
Ji(z) = det( Dg(2) Dh(z) > , z€B",

and it is elementary to deduce that
Jt(2) = | det Dh(2)|? det(I,, — wi(2)ws(2)), =€ B"™

Hence f is sense-preserving, i.e., J¢(z) > 0 for z € B", if and only if h is locally
biholomorphic on B™ and det(I, — wy(2)ws(z)) > 0, for all z € B”. In the case of
one complex variable, wy = ¢’/h’ is the dilatation of f. It is known that f =h+g
is locally univalent and sense-preserving on U if and only if |¢'(z)] < |h/(2)| for
z € U, i.e., h is locally univalent on U and |wf(z)| < 1 for z € U. In dimension
n>2if f=h+g:B" — C" is a plurtharmonic mapping such that h is locally
biholomorphic on B™ and ||ws(2)|| < 1 for z € B™, then f is a sense-preserving
locally univalent mapping on B™ (cf. [6, Theorem 5]).

The following notion will be useful in the next section (see e.g. [11], for n = 1).

Definition 1.1. A domain Q C C" is called linearly connected if there is a constant
M > 0 such that any two points wi, we € ) can be connected by a smooth curve
v C Q with length £(y) < M|jw; — wa||.

Remark 1.2. Tt is clear that M > 1 in Definition 1.1 and that any convex domain is
linearly connected with constant M = 1. On the other hand, if 2; C C is a linearly
connected domain with constant M; > 0, then it is easy to see that 2 = H?Zl Q;
is a linearly connected domain in C" with constant M = \/ﬁmaszl ,,,,, n Mj.

In the case of one complex variable, every bounded linearly connected domain 2
is a Jordan domain (see [11]). Chuaqui and Herndndez [3] proved that if h € H(U)
is a univalent function, then there exists a constant ¢ > 0 such that each harmonic
function f = h 4 g with |wy| < c is univalent on U if and only if h(U) is a linearly
connected domain.

In this paper, we investigate linear connectivity and its role in the study of
certain sufficient conditions of univalence for pluriharmonic mappings of B™ into
C™, thereby finding n-dimensional analogues of the results in [3]. Other necessary
and sufficient conditions of univalence for pluriharmonic mappings of B" into C™
may be found in [6]. On the other hand, Herndndez and Martin [8] obtained
certain necessary and sufficient conditions for harmonic mappings of the unit disc
U into C to be stable univalent. We generalize some of these results to the case
of pluriharmonic mappings of B™ into C™. To this end, we prove that there is an
equivalence between stable pluriharmonic univalence and stable analytic univalence
on B™. Also, we prove the equivalence between stable pluriharmonic strongly close-
to-convexity and stable analytic close-to-convexity. Other necessary and sufficient
conditions of univalence for harmonic and pluriharmonic mappings may be found
in [2] and [6].
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2. MAIN RESULTS

We begin this section with the following result. In the case of one complex
variable, see [3] (see also [1], for related results in the case n = 1).

Theorem 2.1. Let f = h+ g : B" — C" be a pluriharmonic mapping such that
h is biholomorphic on B™ and h(B™) is a linearly connected domain with constant
M > 1. Assume that ||lwy(2)|| < 1/M for z € B™. Then f is univalent and sense-
preserving on B"™. Moreover, if |ws(2)|| < ¢ < 1/M for z € B", then f(B") is a
linearly connected domain in C™.

Proof. Suppose that there exists two distinct points z1, 2o € B™ such that f(z1) =
f(22), or equivalently

0= f(z1) = f(22) = h(z1) = h(22) + (9(21) — 9(22)) = w1 — w2 + o(w1) — (w2),
where w; = h(z;) for j = 1,2, and ¢ = go h~!. This implies that
(2.1) o(wy) — p(we) = wg — wy.

Clearly, w1 # wa, since h is injective on B". Let I' C h(B™) be a smooth curve
joining w; and ws such that ¢(T') < M||Jwy — ws||. Then, we have

1 1
/0 Dw(w(t))(w’(t))dt’ S/O [ Dp(w(t))] - [lw'(t)]ldt,
where w(t), 0 < ¢ < 1, is a parametrization of I'. On the other hand, since
@ = goh™!, it follows that

Dy(w) = Dg(2)[Dh(2)] ™! = wy(2), z=h""(w) €B"

Hence, in view of (2.2) and the fact that |lws(2)|| < 1/M for z € B™, we deduce
that

(2.2) [lp(wr) —p(wa)| =

() = plwn)l < 37 | 'Ot = 7)< s = wal.

However, this is a contradiction to (2.1). Hence, f must be univalent, as desired.
Next, assume that |ws(2)]] < ¢ < 1/M for z € B". Let A = h(B") and
Q = f(B"). Also, let ¥(w) = w+ ¢(w) for w € A, where ¢ = go h™!. Then it
is easy to see that ¢¥(w) = f(z) for w = h(z) € A, and thus ¥(A) = Q. Now, let
w1, ws be two distinct points in Q. Then w; = ¥ (w,), where w; € A, j = 1,2. Since
A is linearly connected with constant M, there exists a smooth curve v contained
in A such that ¢(y) < M||Jw; — we||. Also, let I' = ¢(y). Then I' is also a smooth
curve in 2 between w; and wy. We prove that
(14+c)M
1—cM

Since D¢ (w) = I, and Dgp(w) = wy(z) for w = h(z) € h(B™), we obtain that

or) = / ldul = / ldip ()| = / | Dt (w)dw + Deg(w) ]

(2.3) (r) < Jwr — well

< [Umal+ lwg@Dlldul < (1+) [ ldull = 1+ t6r)
2l ol
Since £(y) < M||w; — we||, we obtain that
2:4) 6r) < M(1+O)lw — wal,
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On the other hand, using the fact that
wi — w2 = wy — wy + p(wi) — p(wz),

we deduce that
w1 — wall = [Jwr — w2 — / [ Do (w)duw||
¥

> s — wa| — / s (llduwl] > g — wa] — e / lduo]
Y Yy

= [lwr = wall = cb(y) = (1 = eM)wy — wy.

Finally, in view of the above relation and (2.4), we obtain that

M(l+c
LT) < M(1+ ¢)|jwy —ws| < 1(—7(;1\4)”“1 — wy|.
Hence, the relation (2.3) follows, as desired. This completes the proof. (]

In view of Theorem 2.1, we obtain the following result (see [6, Theorem 6]). In
the case of one complex variable, this result was obtained in [10], [4] and [3].

Corollary 2.2. Let h : B® — C" be a convex (biholomorphic) mapping, and let
f = h+g be a pluriharmonic mapping such that ||wy(2)|| < 1 for z € B". Then f
is a sense-preserving univalent mapping on B™. Moreover, if ||wy(2)|| < ¢ < 1 for
z € B™, then f(B"™) is a linearly connected domain in C™.

The following result provides a sufficient condition of univalence for the analytic
part of a pluriharmonic mapping on B™ whose image is a linearly connected domain
(see [3], in the case n = 1).

Theorem 2.3. Let f = h+g : B"™ — C" be a univalent pluriharmonic mapping such
that h is locally biholomorphic on B™. Assume that f(B™) is a linearly connected
domain in C™ with constant M > 1, and |lw¢(2)|| < 1/(1 + M) for z € B™. Then
h s biholomorphic on B™.

Proof. First, we observe that f is a sense-preserving mapping, since [jws(z)| <
1/(14+ M) < 1 for z € B™. Suppose that there exist two distinct points z7, 2z € B™

such that h(z1) = h(z2). Then f(z1) — f(22) = g(21) — g(22), i.e.
(2.5) wy —wz = p(wr) — p(ws),

where w; = f(z;) and ¢ = go f~1. Clearly, w; # ws, and since f(B") is a linearly
connected domain with constant M, there exists a smooth curve I' C f(B™) between
wy and we such that £(T") < M||w; — ws]|. In view of (2.5) and the above relation,
we obtain that

26)  lhur = unl = llotw) = ()l = | [ Dusptw)iw + Dgtwim|

It is easy to see that
Dyp(w) = Dg(2) Dy~ (w) and Dy
for all w = f(2) € f(B"). Also, since (f~1o f)(z

Dy f~H(w)Dh(z) + Dwf~'(w)Dg(z) = I,
Dy f Y (w)Dg(2) + Dy f~Y(w)Dh(z) = 0,.

w) = Dg(2)Dgf (),
= z, it follows that

(
)
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Since ||ws(2)|| < 1 for z € B”, it follows that I, — wf(z)ws(z) is an invertible
operator. In view of the above relations, we deduce that

Duf7w) = [Dh()] (1, ~ DDA TDg(z)[Dh() )
= D) (l - Ges () w = 1) € F(BY),

and
Dy f 1 (w)

= ~Dh(z))"" (1, ~ DgIDRE T Dy(=)[Dh(=)]) Dal) DA

- -1
= DA (I - wy P (2)) @), w= f(2) € F(B).
Taking into account the above relations, we deduce that

(2.7) l(wi) = p(wa)]| <

~H(w)) Dy f 7 (w)dw + Dg(f = (w)) D~ (w)dw]|

IN
—
S
=
~

-/ ||Wf<f-1<w>><fn—wf<f—1<w>>wf<f—1<w>>>—1<fndw—wf<f—1<w>>>dw>||
) o= [ JesG= @)l - dul
</ i ))”2<1+|| e

L= [lws (f “Hw))ll
1/(1+ M)
dw|| = — < - .
e [ el = ) < s el
However, this is a contradiction to (2.6). Hence, h must be univalent, as desired.
This completes the proof. (]

In view of Theorem 2.3, we deduce the following particular case. This result is
an n-dimensional version of [3, Theorem 2].

Corollary 2.4. Let f = h+7g:B" — C" be a univalent pluriharmonic mapping
such that h is locally biholomorphic on B™. Assume that f(B") is a conver domain
in C" and |wr(2)|| < 1/2 for z € B". Then h is biholomorphic on B™.

We next prove that under the assumptions of Theorem 2.3, if |lws(2)]| < ¢,
z € B, for some constant ¢ < 1/(1 + M), then h(B™) is a linearly connected
domain (see [3], in the case n = 1). We have

Theorem 2.5. Let f = h+7g : B" — C" be a univalent pluriharmonic mapping such
that h is locally biholomorphic on B™. Assume that f(B™) is a linearly connected
domain with constant M > 1 and ||w¢(2)|| < ¢ for z € B", where ¢ < 1/(1 4 M).
Then h maps B™ onto a linearly connected domain in C™.

Proof. In view of Theorem 2.3, we deduce that h is biholomorphic on B™. Let
A = h(B") and Q2 = f(B"). Also, let ¢(w) = w—p(w) for w € , where p = gof~1.
Then it is easy to see that ¥(w) = h(z) for w = f(2) € Q, and thus ¥(Q) = A.
Now, let wq,ws be two distinct points in A. Then w; = ¥(w;), where w; € Q,
j = 1,2. Since € is linearly connected with constant M, there exists a smooth
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curve vy contained in € such that ¢(v) < M||w; — we||. Also, let I' = ¢(y). Then T
is also a smooth curve in A between w; and w,. We prove that

M
2.8 (D)< —————
(28) ()_l—c(l—I—M)
To this end, we use arguments similar to those in the proof of Theorem 2.3, to
deduce the following relations

flor — wall.

Dagtp(w) = =Dy ()
~Dy() DA (In — Dg(=)[Dh(=)]* Dg(=)[DA()] )

= 0@ (- ws(wr(@) , w=f(2) € f(B").

In view of the above relations, we obtain that

=/Mw=/Wwwm=/w%wwW+mwwww

< [havt+ [ ey < 7 [ vl = =0

Since £(y) < M||w; — we||, we obtain that

M
(2.9) (I < 17”101 —wa|.
—c
On the other hand, using the fact that
w1 —wy = w1 — wz — p(wr) — p(wa),
we deduce that
lwi — wal| = [lwy —wa|| - / llde(w)l
y

zwrmw—/W%wwm+&wmmw
Yy

Jeop ()] c
> o sl [ vl 2 oy el = [
v

L= Jlws ()l
¢ 1—c(1+ M)
= —_ —_ > —e _— .
lwy —we|| = g—l(v) 2 —— [[wr — wo|
Finally, in view of the above relation and (2.9), we obtain that
M M
(I < —— < - .
() 1— ||w1 wa|| < 1—c(1—|—M)”w1 wal
Hence, the relation (2.8) follows, as desired. This completes the proof. (]

In view of Theorem 2.5, we obtain the following particular case.
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Corollary 2.6. Let f = h+7g:B" — C" be a univalent pluriharmonic mapping
such that h is locally biholomorphic on B™. Assume that f(B"™) is a convex domain
in C" and ||wy(2)|| < ¢ for z € B", where ¢ < 1/2. Then h maps B™ onto a linearly
connected domain in C™.

Remark 2.7. Let f = h4g : B™ — C™ be a sense-preserving univalent pluriharmonic
mapping such that h is locally biholomorphic on B™. Assume that f(B") is a convex
domain in C™. It would be interesting to see if h is biholomorphic on B™. In the
case of one complex variable, this property is true in view of [9, Theorem 2.1].

The following result provides a sufficient condition for a pluriharmonic mapping
f of B™ onto a linearly connected domain to be stable univalent in the sense of
Definition 3.1. This result is a generalization of [3, Theorem 3].

Theorem 2.8. Let f = h+7g : B" — C” be a univalent pluriharmonic map-
ping. Assume that f(B™) is a linearly connected domain with constant M > 1.
If lwe(2)]] < 1/(1+2M) for z € B", then fa = h+ Ag is univalent and sense-
preserving on B", for each A € L(C™) with || A|| < 1. Moreover, if ||ws(2)|| < ¢ <
1/(1 4 2M) for z € B™, then fa(B") is a linearly connected domain in C™.

Proof. Fix A € L(C™) such that [|A]| <1and A # I,. Since |lwy, (2)| < [ws(2)]| <
1/(1 4+ 2M) for z € B™, we deduce that f and fa are sense-preserving mappings.
Suppose that there exist two distinct points 21, 2z € B™ such that fa(z1) = fa(z2).
This relation implies that

f(z1) = f(z2) = (In — A)(g(21) — g(22))-
Let wy = f(21) and we = f(22). Then

wi —wa = (I — A)(p(wr) — p(ws)), @=gof "
As in the proof of (2.7), we deduce that

(2.10) ||w1 —wQH S 2M||w1 —w2||,

1-C
where C' = sup,¢ -1 [lwy(2)[. On the other hand, since C' < 1/(1 + 2M), the
relation (2.10) holds if and only if w; = wq, which implies that z; = z5. However,
this is a contradiction. Hence f4 is univalent on B", as desired.

Next, we assume that ||wy(z)| < ¢ < 1/(1+ 2M) for z € B". By Theorem 2.5
and its proof, h(B™) is a linearly connected domain with constant

M
1-(1+M)/(142M)

By applying Theorem 2.1 to the mapping fa, we obtain that f4(B™) is a linearly
connected domain in C™. This completes the proof. O

=142M.

Corollary 2.9. Let f =h+7:B" — C" be a univalent pluriharmonic mapping.
Assume that f(B"™) is a convex domain. If ||w¢(z)|| < 1/3 for z € B", then fa =
h+ Ag is univalent and sense-preserving on B", for each A € L(C™) with ||A] < 1.
Moreover, if |lwr(2)]] < ¢ < 1/3, z € B™, then fa(B™) is a linearly connected
domain in C".

Before to give the following remarks, we recall that if f = h+g: U — Cis a
harmonic mapping, then f is called close-to-convex if f is univalent and f(U) is a
close-to-convex domain, i.e., C\ f(U) is a union of non-crossing half-lines. It is well
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known in the analytic case that f is close-to-convex on U if and only if there exists
a convex (univalent) function h such that

s H:Ez” >0, zel.

Remark 2.10. Kalaj [9] (compare [3, Theorem 3]) proved that if f = h+7 is a sense-
preserving univalent harmonic mapping of the unit disc U onto a convex domain,
then f, = h + ag is close-to-convex, and thus univalent, for all ¢ € C, |a] < 1. In
addition, if |a| < 1, then f, is |a|-quasiconformal.

Remark 2.11. Let n > 2 and let f = h+7g : B® — C™ be a univalent pluriharmonic
mapping. Assume that f(B") is a convex domain and |jws(2)|| < 1 for z € B™. It
would be interesting to see if f4 = h+ Ag is univalent on B”, for all A € L(C"™) such
that |A|| <1, and if f4 is quasiconformal on B", whenever ||A|| < 1, respectively.

3. STABLE UNIVALENT MAPPINGS ON B"

In this section we investigate the connection between stable pluriharmonic univa-
lent mappings and stable analytic univalent mappings. In the case of one complex
variable, this notion was considered in [8].

Definition 3.1. Let f = h+ g : B® — C" be a sense preserving pluriharmonic
mapping. We say that f is stable univalent on B™ if all mappings f4 = h + Ag,
where A is a unitary matrix, are univalent on B".

We also say that the analytic mapping h + g is stable univalent on B™ if all
mappings F4 = h + Ag, where A is a unitary matrix, are univalent on B".

Theorem 3.2. The sense preserving pluriharmonic mapping f = h + g is stable
pluritharmonic univalent on B™ if and only if the analytic mapping F = h + g s
stable analytic univalent on B™.

Proof. Assume that f = h+7 is stable pluriharmonic univalent on B"™. If F' = h+g
is not stable analytic univalent on B™, then there exists a unitary matrix A such that
Fa4 = h+ Ag is not univalent on B™. Then there exist distinct points z1, zo € B"
such that F4(z1) = Fa(z2). Therefore, we have

h(z1) = h(z) = A(g(22) — g(21))-

If h(z1) = h(z2), then we have g(z1) = g(z2), and this implies that f is not univalent.
Hence h(z1) # h(z2). Then there exists a unitary matrix V' such that

V(h(z1) = h(z2)) = VA(g(22) — g(z1))

is a real vector. Then we have

V(h(z1) = h(z2)) = VA(g(z2) — g(z1)).
This implies that fi,_175(21) = fi,-1774(22). However, this is a contradiction to the
fact that fi,_.37 is univalent on B”. Hence F' = h + g is stable analytic univalent
on B", as desired.
The converse part can be proved by an argument similar to the above. O

In view of Theorem 3.2, we obtain the following sufficient condition for a sense-
preserving pluriharmonic mapping to be univalent on B” (compare [6]).
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Corollary 3.3. Let f = h+g : B® — C" be a sense-preserving pluriharmonic
mapping. If h + Ag is biholomorphic on B™, for each unitary matriz A, then f is
univalent on B™.

Proof. Indeed, since h + Ag is biholomorphic for each unitary matrix A, it follows
that h + g is stable analytic univalent on B™, and thus f is stable univalent on B",
in view of Theorem 3.2. Hence f is also univalent, as desired. [l

From Corollary 2.2 we obtain the following sufficient condition for a plurihar-
monic mapping to be stable univalent on B".

Corollary 3.4. Let f = h+7g:B" — C™ be a pluriharmonic mapping such that
h is convex (biholomorphic) on B™ and ||ws(2)|| < 1 for z € B". Then f is stable
plurtharmonic univalent on B”™.

Proof. Clearly, f is sense-preserving since |lwys(z)|| < 1 for z € B". Let A be a
unitary matrix, and let f4 = h+ Ag. Since wy, (2) = Aws(z) for z € B", we deduce
that [|wys, (2)]| < 1 for z € B™. Since h is convex, it follows in view of Corollary 2.2
that f4 is univalent. Also, since A is arbitrary, we deduce that f is stable univalent,
as desired. This completes the proof. O

Remark 3.5. Clearly, any stable pluriharmonic univalent mapping on B™ is also
univalent on B"™. However, there exist pluriharmonic univalent mappings on B"
which are not stable univalent. To see this, let h, g : U — C be given by (cf. [8])

Then c+ 1§3
h(¢) 4+ g(¢) = ﬁa (] < 1.

The above relation implies that |h(r) + g(r)| > ooz for r € (0,1), and thus
h+ g ¢ S. However, the Koebe harmonic function f = h + g is univalent on U
(see e.g. [5]). Now, let H(z) = (h(z1),...,h(zn)) and G(2) = (g(21),...,9(2z,)) for
2z = (21,...,2,) € B". Also, let F = H + G. It is clear that that H + G is not
biholomorphic on B”, in view of the fact that h 4 g is not univalent on U. Taking
into account Theorem 3.2, we deduce that f is not stable univalent on B™. On
the other hand, since F'(z) = (f(21),..., f(zn)) for z = (21,...,2,) € B", and f is
univalent on U, it follows that F' is also univalent on B™.

Next, we prove the following result related to the univalence of the analytic part
of a stable pluriharmonic univalent mapping on B".

Theorem 3.6. Let f = h+ g be a stable pluriharmonic univalent mapping on B™
such that h is locally biholomorphic on B™ and ||ws(2)|| < 1 for z € B". Then h is
biholomorphic on B™.

Proof. Suppose that h is not univalent on B". Then there exist two distinct points
21,2 € B" such that h(z) = h(zs). By considering f = (h o 1 — h(z1)) +
(go @1 —g(z1)), where @1 € Aut(B™) with ¢1(0) = 21, we may assume that z; =
h(z1) =0 and g(z1) = 0.

Since h(0) = ¢g(0) = 0 and Fy = h+Ug is univalent on B™ for any unitary matrix
U, we obtain that for all z € B™ \ {0}, ||h(2)|| # |lg(2)]|]. Using the continuity
of [|h(2)|| — |lg(#)]] on B™ and the assumption that h(z2) = h(z1) = 0, we have
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1h(2)|| < |lg(z)]| on B™\ {0}. Since h is locally biholomorphic, there exists z3 €
B™ \ {0} such that h(tzs) # 0 for ¢t € (0,1). From |[h(tz3)]] < ||g(tzs)| we have
IDR(0)z3 + O(t)]| < ||Dg(0)z3 + O(t)||. Letting ¢ — +0 in this inequality, we
have || Dh(0)z3|| < ||[Dg(0)z3||. Therefore, we have ||w|] < [Jwf(0)wl||, where w =
Dh(0)z3 # 0. This is a contradiction. Thus, h is univalent on B", as desired. This
completes the proof. O

We next consider the notion of stable strongly close-to-convexity for plurihar-
monic mappings on B" and relate this notion to that of holomorphic close-to-
convexity.

The following notion is due to Suffridge [12]. Note that any close-to-convex
mapping on B™ is also biholomorphic (see [12] and [7]).

Definition 3.7. Let f : B" — C” be a holomorphic mapping. We say that f is
close-to-convex if there exists a convex (biholomorphic) mapping h on B” such that

R(Df(2)[Dh(2)] " (u),u) >0, z€B", [uf =1.
The above notion may be extended to the case of mappings of class C' on B".

Definition 3.8. Let f : B” — C" be a mapping of class C' on B". We say that f
is strongly close-to-convex if there exists a convex (biholomorphic) mapping h on
B" such that

(3.1) R(D:f(2)[Dh(2)] " (u) + Dz f(2)[Dh(2)] 1 (@), u) >0, z€B", |lul|=1.

It is clear that a mapping f € H(B") is strongly close-to-convex if and only if f
is close-to-convex in the sense of Definition 3.7.

We next prove that any C! strongly close-to-convex mapping on B" is univalent
(see [4] and [10] in the case n = 1).
Proposition 3.9. Let f : B® — C" be a C' strongly close-to-convexr mapping.

Then f is univalent on B™.

Proof. Since f is strongly close-to-convex, there exists a convex (biholomorphic)

mapping h on B™ such that the relation (3.1) holds. Let A = h(B") and ¢ : A — C"

be given by ¢ = f o h~!. Then q is of class C! on A and it is easy to see that
R(Dypq(w)(u) + Dgq(w)(@),u) >0, weA, |u||=1L1

Now, let w; and we be arbitrary points in A such that w; # ws. Then w(t) =
(1 —t)wy + twa € A, t € [0,1], by the convexity of A, and

o) — gt 20 = [ atwoy, 2

- /o w (Dot ezt ) + Peate) (=) ey ) >

Consequently, g(w;1) # q(ws), and thus ¢ is univalent on A. Hence f = goh is also
univalent on B™, as desired. This completes the proof. ([l

Remark 3.10. (i) It is not difficult to deduce that if f = h+g: B" — C" is a
pluriharmonic mapping such that & is convex (biholomorphic) on B" and ||wy(2)|| <
1 for z € B™, then f is strongly-close-to-convex.

Indeed, the condition (3.1) reduces to

1+ R(Dg(2)[Dh(=)]" (u), @) >0, ze€B", |u]=1.
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Since ||ws(2)|| < 1, the above condition holds, as desired.

(ii) If f =h+7g:U — C is a sense-preserving harmonic mapping such that h is
convex, then f is close-to-convex, in view of [4, Theorem 5.17].

(iii) Let f = h+g: U — C be a harmonic mapping such that h is convex. If f
is strongly close-to-convex with respect to h, then f is also close-to-convex.

Indeed, the condition (3.1) reduces to

g9'(2)
h'(2)
Hence |wg(z)| < 1 for z € U, and thus f is sense-preserving. In view of Remark
3.10 (ii), if follows that f is close-to-convex, as desired.

1—|—§R[u2 }>O7 zeU, |ul=1.

Now, we may define the notion of stable strongly close-to-convexity for plurihar-
monic mappings on B™ (cf. [8]).

Definition 3.11. Let f = h + g be a sense-preserving pluriharmonic mapping on
B". We say that f is stable pluriharmonic strongly close-to-convex (with respect
to a biholomorphic convex mapping H) if all mappings f4 = h + Ag, where A is a
unitary matrix, are strongly close-to-convex (with respect to H) on B™.

We also say that the analytic mapping h + ¢ is stable close-to-convex (with
respect to a biholomorphic convex mapping H) on B™ if all mappings Fa = h+ Ag,
where A is a unitary matrix, are close-to-convex (with respect to H) on B™.

Theorem 3.12. Let f = h+ g be a pluriharmonic univalent mapping on B™ such
that h is convex (biholomorphic) on B™ and |lwy(2)|| < 1 for z € B™. Then f is
stable pluriharmonic strongly close-to-convex. Also, h + g is stable analytic close-
to-convez.

Proof. Let fa = h+Ag, where A is a unitary matrix. Since |wy(2)]| < 1 for z € B,
it is easy to deduce that

R(D: fa(2)[Dh(2)] " (w) + Dzfa(2)[Dh(2)]~1(@), w)

=1+ R(Aws(2)(w),w) >0, zeB", |w|=1.
Since h is convex, it follows that f4 is strongly close-to-convex with respect to h,
as desired.
The fact that h + Ag is close-to-convex with respect to h follows in the same
manner as above. (]

We can prove the converse of Theorem 3.12 (compare [8] for n = 1).

Theorem 3.13. Let f = h+ g be a pluriharmonic univalent mapping on B™ such
that h is convex (biholomorphic) on B™. If f is stable pluritharmonic strongly close-
to-convexr with respect to h or h + g is stable analytic close-to-convex with respect
to h, then |lwe(2)]| <1 for z € B™.

Proof. Let z € B"™ be fixed. There exists w € C" with ||w|] = 1 such that
lwr(2)]| = |lwr(z)(w)]]. We may assume that ||w;(z)| > 0. Assume that f is
stable pluriharmonic strongly close-to-convex with respect to h. Let fa = h + Ag,
where A is a unitary matrix such that

SO .
for@@] ~ 4
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Since
R(D: fa(2)[Dh(2)] " (w) + Dzfa(2)[Dh(2)] (@), w)
= 1+ R @), w) = 1 wp(2)(w)] >0,
we obtain that |lwy(2)]| < 1, as desired. O

We next prove that there is an equivalence between stable pluriharmonic strongly
close-to-convexity and stable analytic close-to-convexity on B"™ (compare [8] for
n = 1; see also [4] and [5]).

Theorem 3.14. Let f = h+7 be a pluriharmonic univalent mapping on B™. Let H
be a biholomorphic convex mapping on B™. Then f is stable strongly pluriharmonic
close-to-convexr with respect to H if and only if F = h + g is stable analytic close-
to-convexr with respect to H.

Proof. Assume that f = h+g is stable pluriharmonic strongly close-to-convex with
respect to H. Let F')y4 = h+ Ag, where A is an arbitrary unitary matrix. Let w € C™
with ||w|| = 1 be fixed. There exists a unitary matrix U such that A*w = U*w
Since the pluriharmonic mapping fy = h 4+ Ug is strongly close-to-convex with
respect to H, we obtain that

R(D. fu(2)[DH (2)]"" (w) + Dz fu () [DH (2)]~ (@), w) > 0.
However, since
R(D- fu(2)[DH(2)] " (w) + Dzfu(2)[DH(2)] L (w
= R(Dh(2)[DH (2)]"" (w), w) + R(UDg(2)[DH (2)] -
= R(Dh(2)[DH(2)] ! (w), w) + R(Dg(2)[DH(2)] "
= R(Dh(2)[DH (2)] " (w), w) + R(ADg(2)[DH (2)] " (w), w)
= R(DFa(2)[DH ()] (w),w),

we obtain that
R(DF4(2)[DH (2)]”*(w),w) > 0.
Thus, F is stable analytic close-to-convex with respect to H.
The converse part can be proved by an argument similar to the above. O
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