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Abstract. In this paper we obtain certain sufficient conditions for the uni-

valence of pluriharmonic mappings defined in the unit ball Bn of Cn. The
results are generalizations of conditions of Chuaqui and Hernández that relate
the univalence of planar harmonic mappings with linearly connected domains,

and show how such domains can play a role in questions regarding injectivity
in higher dimensions. In addition, we extend recent work of Hernández and
Mart́ın on a shear type construction for planar harmonic mappings, by adapt-
ing the concept of stable univalence to pluriharmonic mappings of the unit ball

Bn into Cn.

1. Introduction

Let Cn denote the space of n complex variables z = (z1, . . . , zn) with the Eu-
clidean inner product ⟨z, w⟩ =

∑n
j=1 zjwj and the Euclidean norm ∥z∥ = ⟨z, z⟩1/2.

The open ball {z ∈ Cn : ∥z∥ < r} is denoted by Bn
r and the unit ball Bn

1 is denoted
by Bn. In the case of one complex variable, B1 is the usual unit disc U.

Let L(Cn,Cm) denote the space of linear operators from Cn into Cm with the
standard operator norm. The space L(Cn,Cn) is denoted by L(Cn). Also, let In be
the identity in L(Cn). If Ω is a domain in Cn, let H(Ω) be the set of holomorphic
mappings from Ω into Cn. If Ω is a domain in Cn which contains the origin and
f ∈ H(Ω), we say that f is normalized if f(0) = 0 and Df(0) = In. The family of
normalized biholomorphic mappings on Bn will be denoted by S(Bn). In the case
n = 1, S(B1) is denoted by S, which is the usual family of normalized univalent
functions on U. If f ∈ H(Bn), we say that f is locally biholomorphic on Bn if
detDf(z) ̸= 0, z ∈ Bn, where Df(z) is the complex Jacobian matrix of f at z. Let
LSn be the set of normalized locally biholomorphic mappings on Bn.

A complex-valued function f of class C2 on Bn is said to be pluriharmonic if its
restriction to every complex line is harmonic, which is equivalent to the fact that

∂2

∂zj∂zk
f(z) = 0, ∀ z ∈ Bn, ∀ j, k = 1, 2 . . . , n.
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Every pluriharmonic mapping f : Bn → Cn can be written as f = h + g, where
g, h ∈ H(Bn), and this representation is unique if g(0) = 0.

If f = h+ g : Bn → Cn is a pluriharmonic mapping such that h is locally biholo-
morphic on Bn, we denote by Jf the real Jacobian of f and ωf (z) = Dg(z)[Dh(z)]−1

for z ∈ Bn. Then

Jf (z) = det

(
Dh(z) Dg(z)

Dg(z) Dh(z)

)
, z ∈ Bn,

and it is elementary to deduce that

Jf (z) = | detDh(z)|2 det(In − ωf (z)ωf (z)), z ∈ Bn.

Hence f is sense-preserving, i.e., Jf (z) > 0 for z ∈ Bn, if and only if h is locally

biholomorphic on Bn and det(In − ωf (z)ωf (z)) > 0, for all z ∈ Bn. In the case of
one complex variable, ωf = g′/h′ is the dilatation of f . It is known that f = h+ g
is locally univalent and sense-preserving on U if and only if |g′(z)| < |h′(z)| for
z ∈ U, i.e., h is locally univalent on U and |ωf (z)| < 1 for z ∈ U. In dimension
n ≥ 2, if f = h + g : Bn → Cn is a pluriharmonic mapping such that h is locally
biholomorphic on Bn and ∥ωf (z)∥ < 1 for z ∈ Bn, then f is a sense-preserving
locally univalent mapping on Bn (cf. [6, Theorem 5]).

The following notion will be useful in the next section (see e.g. [11], for n = 1).

Definition 1.1. A domain Ω ⊆ Cn is called linearly connected if there is a constant
M > 0 such that any two points ω1, ω2 ∈ Ω can be connected by a smooth curve
γ ⊂ Ω with length ℓ(γ) ≤M∥ω1 − ω2∥.

Remark 1.2. It is clear thatM ≥ 1 in Definition 1.1 and that any convex domain is
linearly connected with constant M = 1. On the other hand, if Ωj ⊆ C is a linearly
connected domain with constant Mj > 0, then it is easy to see that Ω =

∏n
j=1 Ωj

is a linearly connected domain in Cn with constant M =
√
nmaxj=1,...,nMj .

In the case of one complex variable, every bounded linearly connected domain Ω
is a Jordan domain (see [11]). Chuaqui and Hernández [3] proved that if h ∈ H(U)
is a univalent function, then there exists a constant c > 0 such that each harmonic
function f = h+ g with |ωf | < c is univalent on U if and only if h(U) is a linearly
connected domain.

In this paper, we investigate linear connectivity and its role in the study of
certain sufficient conditions of univalence for pluriharmonic mappings of Bn into
Cn, thereby finding n-dimensional analogues of the results in [3]. Other necessary
and sufficient conditions of univalence for pluriharmonic mappings of Bn into Cn

may be found in [6]. On the other hand, Hernández and Mart́ın [8] obtained
certain necessary and sufficient conditions for harmonic mappings of the unit disc
U into C to be stable univalent. We generalize some of these results to the case
of pluriharmonic mappings of Bn into Cn. To this end, we prove that there is an
equivalence between stable pluriharmonic univalence and stable analytic univalence
on Bn. Also, we prove the equivalence between stable pluriharmonic strongly close-
to-convexity and stable analytic close-to-convexity. Other necessary and sufficient
conditions of univalence for harmonic and pluriharmonic mappings may be found
in [2] and [6].
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2. Main results

We begin this section with the following result. In the case of one complex
variable, see [3] (see also [1], for related results in the case n = 1).

Theorem 2.1. Let f = h + g : Bn → Cn be a pluriharmonic mapping such that
h is biholomorphic on Bn and h(Bn) is a linearly connected domain with constant
M ≥ 1. Assume that ∥ωf (z)∥ < 1/M for z ∈ Bn. Then f is univalent and sense-
preserving on Bn. Moreover, if ∥ωf (z)∥ ≤ c < 1/M for z ∈ Bn, then f(Bn) is a
linearly connected domain in Cn.

Proof. Suppose that there exists two distinct points z1, z2 ∈ Bn such that f(z1) =
f(z2), or equivalently

0 = f(z1)− f(z2) = h(z1)− h(z2) + (g(z1)− g(z2)) = w1 − w2 + φ(w1)− φ(w2),

where wj = h(zj) for j = 1, 2, and φ = g ◦ h−1. This implies that

(2.1) φ(w1)− φ(w2) = w2 − w1.

Clearly, w1 ̸= w2, since h is injective on Bn. Let Γ ⊂ h(Bn) be a smooth curve
joining w1 and w2 such that ℓ(Γ) ≤M∥w1 − w2∥. Then, we have

(2.2) ∥φ(w1)− φ(w2)∥ =

∥∥∥∥∫ 1

0

Dφ(w(t))(w′(t))dt

∥∥∥∥ ≤
∫ 1

0

∥Dφ(w(t))∥ · ∥w′(t)∥dt,

where w(t), 0 ≤ t ≤ 1, is a parametrization of Γ. On the other hand, since
φ = g ◦ h−1, it follows that

Dφ(w) = Dg(z)[Dh(z)]−1 = ωf (z), z = h−1(w) ∈ Bn.

Hence, in view of (2.2) and the fact that ∥ωf (z)∥ < 1/M for z ∈ Bn, we deduce
that

∥φ(w1)− φ(w2)∥ <
1

M

∫ 1

0

∥w′(t)∥dt = 1

M
ℓ(Γ) ≤ ∥w1 − w2∥.

However, this is a contradiction to (2.1). Hence, f must be univalent, as desired.
Next, assume that ∥ωf (z)∥ ≤ c < 1/M for z ∈ Bn. Let ∆ = h(Bn) and

Ω = f(Bn). Also, let ψ(w) = w + φ(w) for w ∈ ∆, where φ = g ◦ h−1. Then it
is easy to see that ψ(w) = f(z) for w = h(z) ∈ ∆, and thus ψ(∆) = Ω. Now, let
ω1, ω2 be two distinct points in Ω. Then ωj = ψ(wj), where wj ∈ ∆, j = 1, 2. Since
∆ is linearly connected with constant M , there exists a smooth curve γ contained
in ∆ such that ℓ(γ) ≤ M∥w1 − w2∥. Also, let Γ = ψ(γ). Then Γ is also a smooth
curve in Ω between ω1 and ω2. We prove that

(2.3) ℓ(Γ) ≤ (1 + c)M

1− cM
∥ω1 − ω2∥.

Since Dwψ(w) = In and Dwψ(w) = ωf (z) for w = h(z) ∈ h(Bn), we obtain that

ℓ(Γ) =

∫
Γ

∥du∥ =

∫
γ

∥dψ(w)∥ =

∫
γ

∥Dwψ(w)dw +Dwψ(w)dw∥

≤
∫
γ

(∥In∥+ ∥ωf (z)∥)∥dw∥ ≤ (1 + c)

∫
γ

∥dw∥ = (1 + c)ℓ(γ).

Since ℓ(γ) ≤M∥w1 − w2∥, we obtain that

(2.4) ℓ(Γ) ≤M(1 + c)∥w1 − w2∥.
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On the other hand, using the fact that

ω1 − ω2 = w1 − w2 + φ(w1)− φ(w2),

we deduce that

∥ω1 − ω2∥ ≥ ∥w1 − w2∥ −
∫
γ

∥Dφ(w)dw∥

≥ ∥w1 − w2∥ −
∫
γ

∥ωf (z)∥∥dw∥ ≥ ∥w1 − w2∥ − c

∫
γ

∥dw∥

= ∥w1 − w2∥ − cℓ(γ) ≥ (1− cM)∥w1 − w2∥.
Finally, in view of the above relation and (2.4), we obtain that

ℓ(Γ) ≤M(1 + c)∥w1 − w2∥ ≤ M(1 + c)

1− cM
∥ω1 − ω2∥.

Hence, the relation (2.3) follows, as desired. This completes the proof. �

In view of Theorem 2.1, we obtain the following result (see [6, Theorem 6]). In
the case of one complex variable, this result was obtained in [10], [4] and [3].

Corollary 2.2. Let h : Bn → Cn be a convex (biholomorphic) mapping, and let
f = h+ g be a pluriharmonic mapping such that ∥ωf (z)∥ < 1 for z ∈ Bn. Then f
is a sense-preserving univalent mapping on Bn. Moreover, if ∥ωf (z)∥ ≤ c < 1 for
z ∈ Bn, then f(Bn) is a linearly connected domain in Cn.

The following result provides a sufficient condition of univalence for the analytic
part of a pluriharmonic mapping on Bn whose image is a linearly connected domain
(see [3], in the case n = 1).

Theorem 2.3. Let f = h+g : Bn → Cn be a univalent pluriharmonic mapping such
that h is locally biholomorphic on Bn. Assume that f(Bn) is a linearly connected
domain in Cn with constant M ≥ 1, and ∥ωf (z)∥ < 1/(1 +M) for z ∈ Bn. Then
h is biholomorphic on Bn.

Proof. First, we observe that f is a sense-preserving mapping, since ∥ωf (z)∥ <
1/(1 +M) < 1 for z ∈ Bn. Suppose that there exist two distinct points z1, z2 ∈ Bn

such that h(z1) = h(z2). Then f(z1)− f(z2) = g(z1)− g(z2), i.e.

(2.5) w1 − w2 = φ(w1)− φ(w2),

where wj = f(zj) and φ = g ◦ f−1. Clearly, w1 ̸= w2, and since f(Bn) is a linearly
connected domain with constantM , there exists a smooth curve Γ ⊂ f(Bn) between
w1 and w2 such that ℓ(Γ) ≤M∥w1 −w2∥. In view of (2.5) and the above relation,
we obtain that

(2.6) ∥w1 − w2∥ = ∥φ(w1)− φ(w2)∥ =

∥∥∥∥∫
Γ

Dwφ(w)dw +Dwφ(w)dw

∥∥∥∥ .
It is easy to see that

Dwφ(w) = Dg(z)Dwf
−1(w) and Dwφ(w) = Dg(z)Dwf

−1(w),

for all w = f(z) ∈ f(Bn). Also, since (f−1 ◦ f)(z) = z, it follows that

Dwf
−1(w)Dh(z) +Dwf

−1(w)Dg(z) = In
Dwf

−1(w)Dg(z) +Dwf
−1(w)Dh(z) = 0n.
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Since ∥ωf (z)∥ < 1 for z ∈ Bn, it follows that In − ωf (z)ωf (z) is an invertible
operator. In view of the above relations, we deduce that

Dwf
−1(w) = [Dh(z)]−1

(
In −Dg(z)[Dh(z)]−1Dg(z)[Dh(z)]−1

)−1

= [Dh(z)]−1
(
In − ωf (z)ωf (z)

)−1

, w = f(z) ∈ f(Bn),

and

Dwf
−1(w)

= −[Dh(z)]−1
(
In −Dg(z)[Dh(z)]−1Dg(z)[Dh(z)]−1

)−1

Dg(z)[Dh(z)]−1

= −[Dh(z)]−1
(
In − ωf (z)ωf (z)

)−1

ωf (z), w = f(z) ∈ f(Bn).

Taking into account the above relations, we deduce that

(2.7) ∥φ(w1)− φ(w2)∥ ≤

≤
∫
Γ

∥Dg(f−1(w))Dwf
−1(w)dw +Dg(f−1(w))Dwf

−1(w)dw∥

=

∫
Γ

∥ωf (f
−1(w))(In − ωf (f−1(w))ωf (f

−1(w)))−1(Indw − ωf (f−1(w)))dw)∥

≤
∫
Γ

∥ωf (f
−1(w))∥

1− ∥ωf (f−1(w))∥2
(1 + ∥ωf (f

−1(w))∥)∥dw∥ =

∫
Γ

∥ωf (f
−1(w))∥ · ∥dw∥

1− ∥ωf (f−1(w))∥

<
1/(1 +M)

1− 1/(1 +M)

∫
Γ

∥dw∥ =
1

M
ℓ(Γ) ≤ ∥w1 − w2∥.

However, this is a contradiction to (2.6). Hence, h must be univalent, as desired.
This completes the proof. �

In view of Theorem 2.3, we deduce the following particular case. This result is
an n-dimensional version of [3, Theorem 2].

Corollary 2.4. Let f = h + g : Bn → Cn be a univalent pluriharmonic mapping
such that h is locally biholomorphic on Bn. Assume that f(Bn) is a convex domain
in Cn and ∥ωf (z)∥ < 1/2 for z ∈ Bn. Then h is biholomorphic on Bn.

We next prove that under the assumptions of Theorem 2.3, if ∥ωf (z)∥ ≤ c,
z ∈ Bn, for some constant c < 1/(1 + M), then h(Bn) is a linearly connected
domain (see [3], in the case n = 1). We have

Theorem 2.5. Let f = h+g : Bn → Cn be a univalent pluriharmonic mapping such
that h is locally biholomorphic on Bn. Assume that f(Bn) is a linearly connected
domain with constant M ≥ 1 and ∥ωf (z)∥ ≤ c for z ∈ Bn, where c < 1/(1 +M).
Then h maps Bn onto a linearly connected domain in Cn.

Proof. In view of Theorem 2.3, we deduce that h is biholomorphic on Bn. Let
∆ = h(Bn) and Ω = f(Bn). Also, let ψ(w) = w−φ(w) for w ∈ Ω, where φ = g◦f−1.
Then it is easy to see that ψ(w) = h(z) for w = f(z) ∈ Ω, and thus ψ(Ω) = ∆.
Now, let ω1, ω2 be two distinct points in ∆. Then ωj = ψ(wj), where wj ∈ Ω,
j = 1, 2. Since Ω is linearly connected with constant M , there exists a smooth
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curve γ contained in Ω such that ℓ(γ) ≤M∥w1 −w2∥. Also, let Γ = ψ(γ). Then Γ
is also a smooth curve in ∆ between ω1 and ω2. We prove that

(2.8) ℓ(Γ) ≤ M

1− c(1 +M)
∥ω1 − ω2∥.

To this end, we use arguments similar to those in the proof of Theorem 2.3, to
deduce the following relations

Dwψ(w) = In+

+ Dg(z)[Dh(z)]−1
(
In −Dg(z)[Dh(z)]−1Dg(z)[Dh(z)]−1

)−1

Dg(z)[Dh(z)]−1

= In + ωf (z)
(
In − ωf (z)ωf (z)

)−1

ωf (z), w = f(z) ∈ Ω,

and

Dwψ(w) = −Dwφ(w)

= −Dg(z)[Dh(z)]−1
(
In −Dg(z)[Dh(z)]−1Dg(z)[Dh(z)]−1

)−1

= −ωf (z)
(
In − ωf (z)ωf (z)

)−1

, w = f(z) ∈ f(Bn).

In view of the above relations, we obtain that

ℓ(Γ) =

∫
Γ

∥du∥ =

∫
γ

∥dψ(w)∥ =

∫
γ

∥Dwψ(w)dw +Dwψ(w)dw∥

≤
∫
γ

∥dw∥+
∫
γ

∥ωf (z)∥
∥dw∥

1− ∥ωf (z)∥
≤ 1

1− c

∫
γ

∥dw∥ =
1

1− c
ℓ(γ).

Since ℓ(γ) ≤M∥w1 − w2∥, we obtain that

(2.9) ℓ(Γ) ≤ M

1− c
∥w1 − w2∥.

On the other hand, using the fact that

ω1 − ω2 = w1 − w2 − φ(w1)− φ(w2),

we deduce that

∥ω1 − ω2∥ ≥ ∥w1 − w2∥ −
∫
γ

∥dφ(w)∥

≥ ∥w1 − w2∥ −
∫
γ

∥Dwφ(w)dw +Dwφ(w)dw∥

≥ ∥w1 − w2∥ −
∫
γ

∥ωf (z)∥
1− ∥ωf (z)∥

∥dw∥ ≥ ∥w1 − w2∥ −
c

1− c

∫
γ

∥dw∥

= ∥w1 − w2∥ −
c

1− c
ℓ(γ) ≥ 1− c(1 +M)

1− c
∥w1 − w2∥.

Finally, in view of the above relation and (2.9), we obtain that

ℓ(Γ) ≤ M

1− c
∥w1 − w2∥ ≤ M

1− c(1 +M)
∥ω1 − ω2∥.

Hence, the relation (2.8) follows, as desired. This completes the proof. �

In view of Theorem 2.5, we obtain the following particular case.
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Corollary 2.6. Let f = h + g : Bn → Cn be a univalent pluriharmonic mapping
such that h is locally biholomorphic on Bn. Assume that f(Bn) is a convex domain
in Cn and ∥ωf (z)∥ ≤ c for z ∈ Bn, where c < 1/2. Then h maps Bn onto a linearly
connected domain in Cn.

Remark 2.7. Let f = h+g : Bn → Cn be a sense-preserving univalent pluriharmonic
mapping such that h is locally biholomorphic on Bn. Assume that f(Bn) is a convex
domain in Cn. It would be interesting to see if h is biholomorphic on Bn. In the
case of one complex variable, this property is true in view of [9, Theorem 2.1].

The following result provides a sufficient condition for a pluriharmonic mapping
f of Bn onto a linearly connected domain to be stable univalent in the sense of
Definition 3.1. This result is a generalization of [3, Theorem 3].

Theorem 2.8. Let f = h + g : Bn → Cn be a univalent pluriharmonic map-
ping. Assume that f(Bn) is a linearly connected domain with constant M ≥ 1.
If ∥ωf (z)∥ < 1/(1 + 2M) for z ∈ Bn, then fA = h + Ag is univalent and sense-
preserving on Bn, for each A ∈ L(Cn) with ∥A∥ ≤ 1. Moreover, if ∥ωf (z)∥ ≤ c <
1/(1 + 2M) for z ∈ Bn, then fA(Bn) is a linearly connected domain in Cn.

Proof. Fix A ∈ L(Cn) such that ∥A∥ ≤ 1 and A ̸= In. Since ∥ωfA(z)∥ ≤ ∥ωf (z)∥ <
1/(1 + 2M) for z ∈ Bn, we deduce that f and fA are sense-preserving mappings.
Suppose that there exist two distinct points z1, z2 ∈ Bn such that fA(z1) = fA(z2).
This relation implies that

f(z1)− f(z2) = (In −A)(g(z1)− g(z2)).

Let w1 = f(z1) and w2 = f(z2). Then

w1 − w2 = (In −A)(φ(w1)− φ(w2)), φ = g ◦ f−1.

As in the proof of (2.7), we deduce that

(2.10) ∥w1 − w2∥ ≤ C

1− C
2M∥w1 − w2∥,

where C = supz∈f−1(Γ) ∥ωf (z)∥. On the other hand, since C < 1/(1 + 2M), the

relation (2.10) holds if and only if w1 = w2, which implies that z1 = z2. However,
this is a contradiction. Hence fA is univalent on Bn, as desired.

Next, we assume that ∥ωf (z)∥ ≤ c < 1/(1 + 2M) for z ∈ Bn. By Theorem 2.5
and its proof, h(Bn) is a linearly connected domain with constant

M

1− (1 +M)/(1 + 2M)
= 1 + 2M.

By applying Theorem 2.1 to the mapping fA, we obtain that fA(Bn) is a linearly
connected domain in Cn. This completes the proof. �
Corollary 2.9. Let f = h + g : Bn → Cn be a univalent pluriharmonic mapping.
Assume that f(Bn) is a convex domain. If ∥ωf (z)∥ < 1/3 for z ∈ Bn, then fA =
h+Ag is univalent and sense-preserving on Bn, for each A ∈ L(Cn) with ∥A∥ ≤ 1.
Moreover, if ∥ωf (z)∥ ≤ c < 1/3, z ∈ Bn, then fA(Bn) is a linearly connected
domain in Cn.

Before to give the following remarks, we recall that if f = h + g : U → C is a
harmonic mapping, then f is called close-to-convex if f is univalent and f(U) is a
close-to-convex domain, i.e., C\f(U) is a union of non-crossing half-lines. It is well
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known in the analytic case that f is close-to-convex on U if and only if there exists
a convex (univalent) function h such that

ℜ
[
f ′(z)

h′(z)

]
> 0, z ∈ U.

Remark 2.10. Kalaj [9] (compare [3, Theorem 3]) proved that if f = h+g is a sense-
preserving univalent harmonic mapping of the unit disc U onto a convex domain,
then fa = h + ag is close-to-convex, and thus univalent, for all a ∈ C, |a| ≤ 1. In
addition, if |a| < 1, then fa is |a|-quasiconformal.

Remark 2.11. Let n ≥ 2 and let f = h+ g : Bn → Cn be a univalent pluriharmonic
mapping. Assume that f(Bn) is a convex domain and ∥ωf (z)∥ < 1 for z ∈ Bn. It
would be interesting to see if fA = h+Ag is univalent on Bn, for all A ∈ L(Cn) such
that ∥A∥ ≤ 1, and if fA is quasiconformal on Bn, whenever ∥A∥ < 1, respectively.

3. Stable univalent mappings on Bn

In this section we investigate the connection between stable pluriharmonic univa-
lent mappings and stable analytic univalent mappings. In the case of one complex
variable, this notion was considered in [8].

Definition 3.1. Let f = h + g : Bn → Cn be a sense preserving pluriharmonic
mapping. We say that f is stable univalent on Bn if all mappings fA = h + Ag,
where A is a unitary matrix, are univalent on Bn.

We also say that the analytic mapping h + g is stable univalent on Bn if all
mappings FA = h+Ag, where A is a unitary matrix, are univalent on Bn.

Theorem 3.2. The sense preserving pluriharmonic mapping f = h + g is stable
pluriharmonic univalent on Bn if and only if the analytic mapping F = h + g is
stable analytic univalent on Bn.

Proof. Assume that f = h+g is stable pluriharmonic univalent on Bn. If F = h+g
is not stable analytic univalent on Bn, then there exists a unitary matrix A such that
FA = h + Ag is not univalent on Bn. Then there exist distinct points z1, z2 ∈ Bn

such that FA(z1) = FA(z2). Therefore, we have

h(z1)− h(z2) = A(g(z2)− g(z1)).

If h(z1) = h(z2), then we have g(z1) = g(z2), and this implies that f is not univalent.
Hence h(z1) ̸= h(z2). Then there exists a unitary matrix V such that

V (h(z1)− h(z2)) = V A(g(z2)− g(z1))

is a real vector. Then we have

V (h(z1)− h(z2)) = V A(g(z2)− g(z1)).

This implies that fV −1V A(z1) = fV −1V A(z2). However, this is a contradiction to the
fact that fV −1V A is univalent on Bn. Hence F = h+ g is stable analytic univalent
on Bn, as desired.

The converse part can be proved by an argument similar to the above. �

In view of Theorem 3.2, we obtain the following sufficient condition for a sense-
preserving pluriharmonic mapping to be univalent on Bn (compare [6]).
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Corollary 3.3. Let f = h + g : Bn → Cn be a sense-preserving pluriharmonic
mapping. If h + Ag is biholomorphic on Bn, for each unitary matrix A, then f is
univalent on Bn.

Proof. Indeed, since h+Ag is biholomorphic for each unitary matrix A, it follows
that h+ g is stable analytic univalent on Bn, and thus f is stable univalent on Bn,
in view of Theorem 3.2. Hence f is also univalent, as desired. �

From Corollary 2.2 we obtain the following sufficient condition for a plurihar-
monic mapping to be stable univalent on Bn.

Corollary 3.4. Let f = h + g : Bn → Cn be a pluriharmonic mapping such that
h is convex (biholomorphic) on Bn and ∥ωf (z)∥ < 1 for z ∈ Bn. Then f is stable
pluriharmonic univalent on Bn.

Proof. Clearly, f is sense-preserving since ∥ωf (z)∥ < 1 for z ∈ Bn. Let A be a

unitary matrix, and let fA = h+Ag. Since ωfA(z) = Aωf (z) for z ∈ Bn, we deduce
that ∥ωfA(z)∥ < 1 for z ∈ Bn. Since h is convex, it follows in view of Corollary 2.2
that fA is univalent. Also, since A is arbitrary, we deduce that f is stable univalent,
as desired. This completes the proof. �
Remark 3.5. Clearly, any stable pluriharmonic univalent mapping on Bn is also
univalent on Bn. However, there exist pluriharmonic univalent mappings on Bn

which are not stable univalent. To see this, let h, g : U → C be given by (cf. [8])

h(ζ) =
ζ − 1

2ζ
2 + 1

6ζ
3

(1− ζ)3
and g(ζ) =

1
2ζ

2 + 1
6ζ

3

(1− ζ)3
, |ζ| < 1.

Then

h(ζ) + g(ζ) =
ζ + 1

3ζ
3

(1− ζ)3
, |ζ| < 1.

The above relation implies that |h(r) + g(r)| > r
(1−r)2 for r ∈ (0, 1), and thus

h + g ̸∈ S. However, the Koebe harmonic function f = h + g is univalent on U
(see e.g. [5]). Now, let H(z) = (h(z1), . . . , h(zn)) and G(z) = (g(z1), . . . , g(zn)) for
z = (z1, . . . , zn) ∈ Bn. Also, let F = H + G. It is clear that that H + G is not
biholomorphic on Bn, in view of the fact that h+ g is not univalent on U. Taking
into account Theorem 3.2, we deduce that f is not stable univalent on Bn. On
the other hand, since F (z) = (f(z1), . . . , f(zn)) for z = (z1, . . . , zn) ∈ Bn, and f is
univalent on U, it follows that F is also univalent on Bn.

Next, we prove the following result related to the univalence of the analytic part
of a stable pluriharmonic univalent mapping on Bn.

Theorem 3.6. Let f = h+ g be a stable pluriharmonic univalent mapping on Bn

such that h is locally biholomorphic on Bn and ∥ωf (z)∥ < 1 for z ∈ Bn. Then h is
biholomorphic on Bn.

Proof. Suppose that h is not univalent on Bn. Then there exist two distinct points
z1, z2 ∈ Bn such that h(z1) = h(z2). By considering f̃ = (h ◦ φ1 − h(z1)) +

(g ◦ φ1 − g(z1)), where φ1 ∈ Aut(Bn) with φ1(0) = z1, we may assume that z1 =
h(z1) = 0 and g(z1) = 0.

Since h(0) = g(0) = 0 and FU = h+Ug is univalent on Bn for any unitary matrix
U , we obtain that for all z ∈ Bn \ {0}, ∥h(z)∥ ̸= ∥g(z)∥. Using the continuity
of ∥h(z)∥ − ∥g(z)∥ on Bn and the assumption that h(z2) = h(z1) = 0, we have
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∥h(z)∥ < ∥g(z)∥ on Bn \ {0}. Since h is locally biholomorphic, there exists z3 ∈
Bn \ {0} such that h(tz3) ̸= 0 for t ∈ (0, 1). From ∥h(tz3)∥ < ∥g(tz3)∥ we have
∥Dh(0)z3 + O(t)∥ < ∥Dg(0)z3 + O(t)∥. Letting t → +0 in this inequality, we
have ∥Dh(0)z3∥ ≤ ∥Dg(0)z3∥. Therefore, we have ∥w∥ ≤ ∥ωf (0)w∥, where w =
Dh(0)z3 ̸= 0. This is a contradiction. Thus, h is univalent on Bn, as desired. This
completes the proof. �

We next consider the notion of stable strongly close-to-convexity for plurihar-
monic mappings on Bn and relate this notion to that of holomorphic close-to-
convexity.

The following notion is due to Suffridge [12]. Note that any close-to-convex
mapping on Bn is also biholomorphic (see [12] and [7]).

Definition 3.7. Let f : Bn → Cn be a holomorphic mapping. We say that f is
close-to-convex if there exists a convex (biholomorphic) mapping h on Bn such that

ℜ⟨Df(z)[Dh(z)]−1(u), u⟩ > 0, z ∈ Bn, ∥u∥ = 1.

The above notion may be extended to the case of mappings of class C1 on Bn.

Definition 3.8. Let f : Bn → Cn be a mapping of class C1 on Bn. We say that f
is strongly close-to-convex if there exists a convex (biholomorphic) mapping h on
Bn such that

(3.1) ℜ⟨Dzf(z)[Dh(z)]
−1(u) +Dzf(z)[Dh(z)]−1(u), u⟩ > 0, z ∈ Bn, ∥u∥ = 1.

It is clear that a mapping f ∈ H(Bn) is strongly close-to-convex if and only if f
is close-to-convex in the sense of Definition 3.7.

We next prove that any C1 strongly close-to-convex mapping on Bn is univalent
(see [4] and [10] in the case n = 1).

Proposition 3.9. Let f : Bn → Cn be a C1 strongly close-to-convex mapping.
Then f is univalent on Bn.

Proof. Since f is strongly close-to-convex, there exists a convex (biholomorphic)
mapping h on Bn such that the relation (3.1) holds. Let ∆ = h(Bn) and q : ∆ → Cn

be given by q = f ◦ h−1. Then q is of class C1 on ∆ and it is easy to see that

ℜ⟨Dwq(w)(u) +Dwq(w)(u), u⟩ > 0, w ∈ ∆, ∥u∥ = 1.

Now, let w1 and w2 be arbitrary points in ∆ such that w1 ̸= w2. Then w(t) =
(1− t)w1 + tw2 ∈ ∆, t ∈ [0, 1], by the convexity of ∆, and

ℜ
⟨
q(w2)− q(w1),

w2 − w1

∥w2 − w1∥2

⟩
=

∫ 1

0

ℜ
⟨
d

dt
q(w(t)),

w2 − w1

∥w2 − w1∥2

⟩
=

∫ 1

0

ℜ
⟨
Dwq(w(t))

(
w2 − w1

∥w2 − w1∥

)
+Dwq(w(t))

(
w2 − w1

∥w2 − w1∥

)
,
w2 − w1

∥w2 − w1∥

⟩
> 0.

Consequently, q(w1) ̸= q(w2), and thus q is univalent on ∆. Hence f = q ◦ h is also
univalent on Bn, as desired. This completes the proof. �
Remark 3.10. (i) It is not difficult to deduce that if f = h + g : Bn → Cn is a
pluriharmonic mapping such that h is convex (biholomorphic) on Bn and ∥ωf (z)∥ <
1 for z ∈ Bn, then f is strongly-close-to-convex.

Indeed, the condition (3.1) reduces to

1 + ℜ⟨Dg(z)[Dh(z)]−1(u), u⟩ > 0, z ∈ Bn, ∥u∥ = 1.
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Since ∥ωf (z)∥ < 1, the above condition holds, as desired.
(ii) If f = h+ g : U → C is a sense-preserving harmonic mapping such that h is

convex, then f is close-to-convex, in view of [4, Theorem 5.17].
(iii) Let f = h+ g : U → C be a harmonic mapping such that h is convex. If f

is strongly close-to-convex with respect to h, then f is also close-to-convex.
Indeed, the condition (3.1) reduces to

1 + ℜ
[
u2
g′(z)

h′(z)

]
> 0, z ∈ U, ∥u∥ = 1.

Hence |ωf (z)| < 1 for z ∈ U, and thus f is sense-preserving. In view of Remark
3.10 (ii), if follows that f is close-to-convex, as desired.

Now, we may define the notion of stable strongly close-to-convexity for plurihar-
monic mappings on Bn (cf. [8]).

Definition 3.11. Let f = h+ g be a sense-preserving pluriharmonic mapping on
Bn. We say that f is stable pluriharmonic strongly close-to-convex (with respect
to a biholomorphic convex mapping H) if all mappings fA = h+Ag, where A is a
unitary matrix, are strongly close-to-convex (with respect to H) on Bn.

We also say that the analytic mapping h + g is stable close-to-convex (with
respect to a biholomorphic convex mapping H) on Bn if all mappings FA = h+Ag,
where A is a unitary matrix, are close-to-convex (with respect to H) on Bn.

Theorem 3.12. Let f = h+ g be a pluriharmonic univalent mapping on Bn such
that h is convex (biholomorphic) on Bn and ∥ωf (z)∥ < 1 for z ∈ Bn. Then f is
stable pluriharmonic strongly close-to-convex. Also, h + g is stable analytic close-
to-convex.

Proof. Let fA = h+Ag, where A is a unitary matrix. Since ∥ωf (z)∥ < 1 for z ∈ Bn,
it is easy to deduce that

ℜ⟨DzfA(z)[Dh(z)]
−1(w) +DzfA(z)[Dh(z)]−1(w), w⟩

= 1 + ℜ⟨Aωf (z)(w), w⟩ > 0, z ∈ Bn, ∥w∥ = 1.

Since h is convex, it follows that fA is strongly close-to-convex with respect to h,
as desired.

The fact that h + Ag is close-to-convex with respect to h follows in the same
manner as above. �

We can prove the converse of Theorem 3.12 (compare [8] for n = 1).

Theorem 3.13. Let f = h+ g be a pluriharmonic univalent mapping on Bn such
that h is convex (biholomorphic) on Bn. If f is stable pluriharmonic strongly close-
to-convex with respect to h or h + g is stable analytic close-to-convex with respect
to h, then ∥ωf (z)∥ < 1 for z ∈ Bn.

Proof. Let z ∈ Bn be fixed. There exists w ∈ Cn with ∥w∥ = 1 such that
∥ωf (z)∥ = ∥ωf (z)(w)∥. We may assume that ∥ωf (z)∥ > 0. Assume that f is
stable pluriharmonic strongly close-to-convex with respect to h. Let fA = h+Ag,
where A is a unitary matrix such that

− ωf (z)(w)

∥ωf (z)(w)∥
= A∗w.
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Since

ℜ⟨DzfA(z)[Dh(z)]
−1(w) +DzfA(z)[Dh(z)]−1(w), w⟩

= 1 + ℜ⟨Aωf (z)(w), w⟩ = 1− ∥ωf (z)(w)∥ > 0,

we obtain that ∥ωf (z)∥ < 1, as desired. �

We next prove that there is an equivalence between stable pluriharmonic strongly
close-to-convexity and stable analytic close-to-convexity on Bn (compare [8] for
n = 1; see also [4] and [5]).

Theorem 3.14. Let f = h+g be a pluriharmonic univalent mapping on Bn. Let H
be a biholomorphic convex mapping on Bn. Then f is stable strongly pluriharmonic
close-to-convex with respect to H if and only if F = h+ g is stable analytic close-
to-convex with respect to H.

Proof. Assume that f = h+g is stable pluriharmonic strongly close-to-convex with
respect to H. Let FA = h+Ag, where A is an arbitrary unitary matrix. Let w ∈ Cn

with ∥w∥ = 1 be fixed. There exists a unitary matrix U such that A∗w = U∗w.
Since the pluriharmonic mapping fU = h + Ug is strongly close-to-convex with
respect to H, we obtain that

ℜ⟨DzfU (z)[DH(z)]−1(w) +DzfU (z)[DH(z)]−1(w), w⟩ > 0.

However, since

ℜ⟨DzfU (z)[DH(z)]−1(w) +DzfU (z)[DH(z)]−1(w), w⟩

= ℜ⟨Dh(z)[DH(z)]−1(w), w⟩+ ℜ⟨UDg(z)[DH(z)]−1(w), w⟩
= ℜ⟨Dh(z)[DH(z)]−1(w), w⟩+ ℜ⟨Dg(z)[DH(z)]−1(w), U∗w⟩
= ℜ⟨Dh(z)[DH(z)]−1(w), w⟩+ ℜ⟨ADg(z)[DH(z)]−1(w), w⟩

= ℜ⟨DFA(z)[DH(z)]−1(w), w⟩,
we obtain that

ℜ⟨DFA(z)[DH(z)]−1(w), w⟩ > 0.

Thus, F is stable analytic close-to-convex with respect to H.
The converse part can be proved by an argument similar to the above. �
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